PROVISIONAL SUNSPOT RELATIVE NUMBERS FOR NOVEMBER 1939 [Dependent alone on observations at Zurich] Data furnished through the courtesy of Prof. W. Brunner, Eidgen, Sternwarte, Zurich, Switzerland] | November
1939 | Relative
numbers | November
1939 | Relative
numbers | November
1939 | Relative
numbers | |------------------|-------------------------------|----------------------------|--------------------------|----------------------------|------------------------| | 1 | a
Eac?
72
61
a 58 | 11
12
13
14
15 | Eac 98
Eac 98
a 87 | 21
22
23
24
25 | d 67 *a 65 62 Ec 61 58 | | 6
7
8 | 62
a 66
Ec 37 | 16
17
18 | d 111
b 103 | 26
27
28 | Mac 62 61 | | November | Relative | November | Relative | November | Relative | |----------|----------|----------|----------|----------|----------| | 1939 | numbers | 1939 | numbers | 1939 | numbers | | 9 | Ec 40 | 19 | Mc 75 | 29 | a 43 | | | Mc 46 | 20 | 50 | 30 | 43 | Mean, 24 days=65.4. a = Passage of an average-sized group through the central meridian. b = Passage of a large group through the central meridian. c = New formation of a group developing into a middle-sized or large center of activity; E, on the eastern part of the sun's disk; W, on the western part; M, on the central-circle Entrance of a large or average-sized center of activity on the east limb. # AEROLOGICAL OBSERVATIONS [Aerological Division, D. M. LITTLE in charge] By B. FRANCIS DASHIELL During November 982 radiosonde and airplane observations were made in the United States, Alaska, Canal Zone, Hawaii, and the West Indies. Of these, 819 were radio-sondes, with 96, 88, 71, and 36 percent reaching 5, 10, 15, and 18 kilometers, respectively. Tables 1 and 1a show these observations, while pressures, temperatures, and resultant winds for 5,000 feet (1.5 kilometers), 3, 4, and 5 kilometers, are shown on charts VIII, IX, X and XI, respectively. Chart XII gives the isentropic data for November; tables 2 and 3 list the winds; and table 4 indicates the tropopauses. Effective November 15, 1939, the hour of all radiosonde observations was advanced to 1 a. m., 75th meridian time. The mean free-air pressures at 5,000 feet (chart VIII) were lowest over the northeastern United States (Mount Washington, N. H., 840 millibars), the northern Great Lakes region (Sault Ste. Marie, Mich., 845 millibars), and thence northeastward over Canada (Newfoundland, 833 millibars). Pressure was lowest, however, in Alaska (Fairbanks and Juneau, 825 and 832 millibars, respectively). Mean pressures were relatively low along the Pacific coast, but the highest occurred over the central Rocky Mountain region, the South, and the Southeast (Durango, Colo., San Antonio, Tex., and Pensacola, Fla., 855 millibars). At 3 kilometers (chart IX) the distribution showed a statistical Low over Sault Ste. Marie, Mich., (699 millibars), and a high over Pensacola, Fla. (714 millibars). Mean pressure continued relatively lower over the Pacific slope, but again the lowest pressure of the month occurred over Alaska (Fairbanks, 678 millibars). Charts X and XI show the mean pressures at 4 and 5 kilometers, respectively. In the United States the lowest pressure persisted over Sault Ste. Marie, Mich., while the southern high-pressure area became definitely centered over Miami, Fla. Low pressure continued over Alaska, with Fairbanks having the lowest during November (592 and 514 millibars at 4 and 5 kilometers, respectively). Above 5 kilometers the lowest pressures for the country were located over Sault Ste. Marie, Mich.; the pressures at Buffalo, N. Y., being only slightly higher. However, the lowest pressures noted during the month still persisted over the Alaskan stations, where Fairbanks was consistently lower than Juneau at all levels (decreasing steadily from a difference of 11 millibars less at 6 kilometers to 3 millibars less at 15 kilometers). The highest pressure in all upper levels prevailed at Miami, Fla., although relatively high pressures were found over the Southwest. In the lower levels November mean free-air pressures were higher than during the preceding month. Maximum differences were noted at the surface, but these decreased slowly with altitude until no differences between the 2 months existed at 1.5 and 2 kilometers over the East and Southeast; at 2.5, 3, and 4 kilometers over the South, Southwest and Pacific States; and from 6 to 11 kilometers over the northern Rocky Mountain region. Above these levels the November pressures were lower than during the preceding month. This situation was particularly outstanding at 8, 9, 10, and 11 kilometers, where, in several instances, the current month was as much as 10 millibars lower. Above these levels the pressure differences decreased with altitude until the November pressure was from 1 to 2 millibars less than during October. At stations where radiosonde observations have been conducted for a full year a comparison of November pressures with those recorded in the corresponding month of 1938 showed that consistently higher pressures prevailed during the current month at all levels over Omaha, Nebr., and Bismarck, N. Dak., (the latter being compared with Fargo, N. Dak.) But Nashville, Tenn., Okland, Calif., Oklahoma City, Okla., and Sault Ste. Marie, Mich., showed current pressures to be higher at all levels up to 4, 5, 6, and 9 kilometers, respectively, and lower than in 1938 at all levels above. At Washington, D. C., the current year and month showed lower pressures above 2 kilometers. Mean relative humidity for November was generally high in the lower levels and, in some cases, continued into the upper levels. High humidity at all levels was noted over Sault Ste. Marie, Mich., Washington, D. C., Miami, Fla., Buffalo, N. Y., and Shreveport, La., while relative humidities were lowest over Oakland, Calif., San Diego, Calif., Bismarck, N. Dak., Medford, Oreg., and Oklahoma City, Okla. Juneau, Alaska, recorded the greatest percentage of mean relative humidities at all levels. In the United States the temperatures at 1.5 kilometers (chart VIII) were lowest over Sault Ste. Marie, Mich., and highest over Miami, Fla., and San Diego, Calif. At this level the temperature over all of the country, except the Great Lakes region and New England, was above freezing (0° C.). However, at Fairbanks and Juneau, Alaska, the lowest temperatures were recorded (-12.6° C. and -4.5° C., respectively). Similar conditions prevailed at 3, 4, and 5 kilometers (charts IX, X, and XI, respectively), with the exception that Miami, Fla., became considerably warmer than San Diego, Calif., and freezing temperatures spread farther over the South. Above 5 kilometers temperatures in the United States were lowest over Sault Ste. Marie, Mich., and highest over Miami, Fla. However, at 13 kilometers, both El Paso, Tex., and San Antonio, Tex., became colder than Sault Ste. Marie, Mich., while at 14 kilometers Miami, Fla., became colder than any station and continued so to the maximum altitude reached. The lowest mean temperature recorded during November (-72.3° C.) occurred at 17 kilometers over Miami, Fla. Both Alaskan stations became warmer than elsewhere at 12 kilometers and remained so throughout all higher levels. Individual minimum temperatures were lowest over the southern stations (Miami, Fla., -77.8° C.; Charleston, S. C., -75.2° C.; El Paso, Tex., -74.3° C.; Atlanta, Ga., -74.2° C.; and San Antonio, Tex., -73.0° C.). All stations south of the 35th parallel, as well as Nashville, Tenn., and Oakland, Calif., recorded individual low temperatures colder than -70.0° C. The warmest minimum temperatures occurred over the Alaskan stations (Fairbanks and Juneau, -60.8° C.). Lowest temperatures recorded over Fairbanks, Alas., occurred at 9 kilometers; over Sault Ste. Marie, Mich., at 13 kilometers; and over St. Louis, Mo., Atlanta, Ga., and Miami, Fla., at 16 kilometers. Mean freezing temperatures (0° C.) occurred north of the Great Lakes area at the surface; as far south as Pennsylvania, lower Michigan, and Minnesota at the 1-kilometer level; over Maryland, the Ohio valley, Iowa, and North Dakota at 2 kilometers; over Georgia, Oklahoma, Wyoming, and Oregon at 3 kilometers; and over southern Florida at 4 kilometers. In the United States and Alaska all radiosonde stations had lower temperatures during November than in the preceding month at all levels up to about 14 kilometers, and then warmer above. However, Billings, Mont., Bismarck, N. Dak., Joilet, Ill., Miami, Fla., Minneapolis, Minn., Phoenix, Ariz., and Sault Ste. Marie, Mich., were colder during the current month at all levels. At those stations where radiosonde observations have been made for a year the current month was colder than November 1938, at all levels over Nashville, Tenn., Sault Ste. Marie, Mich., and Washington, D. C. But Bismarck, N. Dak., and Oakland, Calif., were warmer than 1938 at all levels, while Oklahoma City, Okla., and Omaha, Nebr., were warmer only in the lower levels, and then colder above. Considering the season of the year November pilot-balloon observations were quite satisfactory as high maximum altitudes were reached in many cases, and at all Weather Bureau stations in the United States balloon flights exceeded 5 kilometers. At 64, 23, 5, and 3 stations individual maximum altitudes in excess of 10, 15, 20, and 25 kilometers, respectively, were reached. Western stations, as well as those in the Southeast, reached altitudes higher than 10 kilometers. Most maximum elevations were reported on the 3d, 13th, 14th, and 28th of November. The pilot-balloon work previously conducted at Cleveland, Ohio, was transferred to Akron, Ohio, beginning with November 1, 1939. Also, effective November 15, the hour of all pilot-balloon observations was changed to 5 a. m., 11 a. m., 5 p. m., and 11 p. m., 75th meridian time. Resultant-wind directions and forces, based on 5 a.m., 75th meridian time
observations made at 1.5 kilometers during November, are shown on chart VIII. Over the eastern two-thirds of the country the winds were from the northwest quadrant, but in the far West the directions were generally from the southwest. During the current month the wind directions were more northerly than in the preceding month, except in the far West and North- west. Resultant velocities were moderate; the highest being confined to the East (Harrisburg, Pa., 10.7 meters per second). Low velocities occurred over the South, California and western Nevada (Sacramento, Calif., 0.1 meters per second). At 1.5 kilometers the current winds departed from normal directions by turning northward in clockwise rotations over the eastern and southern portions of the United States. But in the northwestern portion of the country the winds backed away from normal by turning in counterclockwise rotations so as to become more southerly than normal. Large clockwise departures occurred over Houston, Tex., Nashville, Tenn., Sault Ste. Marie, Mich., and San Diego, Calif. Resultant velocities were lighter than normal over most of the country, except in the far Northwest and the extreme East. Outstanding velocity departures were found over Seattle, Wash., where the current resultant was greater than normal (+4.5 meters per second), and at Nashville, Tenn., where it was lower (-4.8 meters per second). The winds at 3 kilometers (chart IX) showed that northwesterly resultants predominated. However, along the Pacific coast the directions were westerly and southwesterly. The current directions were more northerly than those observed during October, except in the far Northwest where the November directions were more southerly. Resultant velocities for November were lowest in the far Southwest and over California. But elsewhere the wind velocities were higher than those noted at 1.5 kilometers. The highest velocity in November at 3 kilometers occurred over Richmond, Va., (11.3 meters per second. November directions at the 3-kilometer level showed departures from normal that turned through clockwise rotations over all of the United States, except in the far Northwest. Large departures from normal occurred over Oklahoma City, Okla., San Diego, Calif., Medford, Oreg., and Spokane, Wash. The velocities were less than normal over the entire country, with the exception of the extreme Northwest. Outstanding negative departures from normal were noted over Albuquerque, N. Mex. (-5.0 meters per second), Cheyenne, Wyo. (-5.3 meters per second), Omaha, Nebr. (-4.1 meters per second), Nashville, Tenn. (-4.6 meters per second), and Boston, Mass. (-4.2 meters per second). Chart X shows the resultant winds at 4 kilometers, based on 5 p. m., 75th meridian time observations. Northwesterly directions again predominated over most of the country While winds from the southwest quadrant persisted in the northern portion of the Pacific slope, northwesterly and northerly winds occurred over all but extreme southern California. Resultant velocities at 4 kilometers were unusually low in the extreme Southwest, and a resultant calm occurred at Winslow, Ariz. The highest velocities were noted over the Eastern States (Richmond, Va., 15.9 meters per second), and the Ohio Valley and lower Great Lakes region (Chicago, Ill., 14.2 meters per second). At 4 kilometers the winds were more northerly than normal over the eastern half of the country, and more southerly over the western portion. Departures from normal were outstanding at Boston, Mass., Nashville, Tenn., Medford, Oreg., Seattle, Wash., Salt Lake City, Utah, and Spokane, Wash. Current resultant velocities were greater than normal over the eastern one-third of the United States and the far Northwest, but less than normal elsewhere (Chicago, Ill., +4.0 meters per second; Cincinnati, Ohio, +3.9 meters per second; Seattle, Wash., +3.0 meters per second; Cheyenne, Wyo., -3.7 meters per second; and Salt Lake City, Utah, -4.6 meters per Resultant-wind directions at 5 kilometers were northwesterly in practically all cases, except the extreme Southeast and far Northwest. Velocities were high east of the Mississippi Valley, being above 10 meters per second, in all but two cases. Richmond, Va., reported the highest velocity (18.2 meters per second). Low resultant velocities persisted, however, in the extreme Southwest, being only 0.3 meter per second at Winslow, Ariz. The November wind directions at 5 kilometers departed from normal by backing in counterclockwise rotations over the Southeast and the Pacific coast. Elsewhere the wind directions departed from normal in clockwise rotations. Outstanding departures were noted at Spokane, Wash., Medford, Oreg., and Oakland, Calif. Extreme departures from the normal velocities were noted over Houston, Tex. (+4.4 meters per second), Medford, Oreg. (-3.0 meters per second), Albuquerque, N. Mex. (-5.4 meters per second), and Salt Lake City, Utah (-4.4 meters per second). A study of wind directions and velocities at 1.5 kilometers, based on 5 a.m. (chart VIII) and 5 p.m. (table 2) observations, indicated a diurnal change in the afternoon directions from those noted at 5 a.m. This departure was clockwise over the South and Southeast, and the central and southern Pacific and Rocky Mountain areas, and counterclockwise elsewhere over the country. At Abilene, Tex., Atlanta, Ga., Little Rock, Ark., and Salt Lake City, Utah, the 5 p. m. winds were more northerly than at 5 a. m. by wide variations, but at Reno, Nev., Sault Ste. Marie, Mich., and Brownsville, Tex., they were decidedly more southerly. Afternoon velocities were higher in the extreme southwest and Southeast, and along the northern border; elsewhere they were lower, particularly the Ohio valley (Cincinnati, Ohio, -2.9 meters per second) At 3 kilometers the 5 p. m. winds were more southerly than at 5 a.m. over most of the country with the exception of the Northeast and the Great Lakes region, the far Northwest and the extreme Southeast. The afternoon resultant velocities were higher than at 5 a. m. east of a line from El Paso, Tex., to Fargo, N. Dak., and lighter elsewhere. High velocity excesses in the afternoon over the 5 a. m. wind speeds occurred at Washington, D. C. (+3.7 meters per second), Nashville, Tenn. (+3.1 meters per second), and Omaha, Nebr. (+3.6 meters per second). Table 2 lists resultant winds based on 5 p. m., 75th meridian time observations. Pilot-balloon flights in the East and Southeast show that the winds turned in counterclockwise rotations as the altitude increased. This was outstanding at Atlanta, Ga., and Charleston, S. C. Over the remainder of the United States the winds turned generally toward the north in clockwise rotations with altitude, particularly over the Great Lakes region and the Northwest. Elsewhere it was noted that as an altitude of 10 kilometers was gained the winds ceased to turn clockwise and began gradually to back in a counterclockwise rotation. At this level the maximum 5 p. m. resultant velocities were noted, and the greatest pressure gradient (by radiosonde observations) between the lowand high-pressure areas (Sault Ste. Marie, Mich., and Miami, Fla., with a gradient difference of 26 millibars) was found to occur. Table 3 shows the maximum individual wind speeds observed during November. While the velocities were not unusually excessive, the speeds of 45.7 meters per second over Harrisburg, Pa., at 2,360 meters, and 75.2 meters per second over Abilene, Tex., were high for these stations. #### MONTHLY MEAN ISENTROPIC CHART 1 The mean isentropic chart, $\theta=302^{\circ}$ (chart XII), for November 1939 is characterized by two weak anticyclonic eddies over the Southwest, both evidently off-shoots of the broad west-northwesterly current over the eastern half of the country. This strong current, which seems also to have a weak downslope motion, has effectively blocked the transport of moisture from the Gulf of Mexico. and is undoubtedly the cause of the almost general deficit in precipitation in the East. The large deficit in the Northwest, on the other hand, is located in a region of upslope motion; however, the air is unusually dry and probably this circumstance was the decisive factor in decreasing the precipitation. Table 1.—Mean free-air barometric pressures (P.) in mb., temperatures (T.) in ° C., and relative humidities (R. H.) in percent obtained by | | | | | | | | | airp | lanes | 1 d | urin | g No | vem | ber . | 1939 | | | | | | | | | | | | | | |---|----------------------|-------------------------|---|----------|---------------------------------|--|----------------------|--------------------------|---|--|---------------------------------|--|----------------------------|--------------------------|----------------|----------|------------|---|--|---------------------------------|--|--|---------------------------------|-------------------------------------|----------------------------|-----|-----------------|----------| | | | | | | | | | | | | | Alt | itude | (1116 | ters) n | n. s. 1 | | | | | | | | • | | | | | | and the second of the second of | | Suri | face | | | 500 | | , | 1,000 | | | 1,500 | | | 2,000 | | | 2,500 | | | 3,000 | | | 4,000 | | | 5,000 | | | Stations and elevations in
meters above sea level | Number of obs. | P. | т. | R.
H. | P. | T. | R.
H. | Р. | т. | R.
H. | P. | т. | R.
H. |
P. | т. | R.
H. | | Coco Solo, C. Z. (15 m) Norfolk, Va. (10 m) Pearl Harbor, T. H. (6 m) Pensacola, Fla. (13 m) St. Thomas, V. I. (8 m) San Diego, Calif. (10 m) Seattle, Wash. (10 m) | 25
30
27
16 | 1,024
1,014
1,015 | 6. 9
21. 7
9. 4
27. 0
15. 0 | 81
80 | 966
960
966
959
959 | 24. 1
8. 2
19. 7
13. 3
23. 7
17. 5
10. 2 | 76
61
92
56 | 905
910
906
904 | 21. 7
5. 8
15. 9
11. 3
20. 9
16. 5
8. 9 | 84
60
81
59
85
40
60 | 855
854
857
854
852 | 19. 1
3. 9
13. 0
9. 2
18. 5
13. 5
6. 3 | 57
77
58
74
36 | 804
807
805
803 | 16. 4
10. 4 | 66
33 | 759
755 | 14.7
.3
10.4
6.1
13.9
7.2
1.3 | 65
50
39
44
67
30
48 | 709
713
714
716
710 | 12. 6
-2. 6
7. 9
3. 7
11. 5
4. 3
-0. 9 | 57
48
34
41
61
27
40 | 625
631
630
634
628 | -10.0
1.7
-2.4
6.1
-3.0 | 47
27
46
61
24 | 555 | -17. 5
-8. 5 | | | | | | | | | | | LAT | CE RE | POI | RT F | OR O | СТС | BEI | R 1939 | | | | | | | | | | | | | | | St. Thomas, V. I. (8 m) | 29 | 1, 013 | 27.8 | 77 | 958 | 24. 4 | 91 | 905 | 21.7 | 84 | 854 | 19. 0 | 78 | 806 | 16.8 | 71 | 759 | 14. 4 | 66 | 715 | 11.7 | 66 | 635 | 6.4 | 56 | | | | ¹ Prepared by the Division of Research and Education. Observations taken about 1 a. m. 75th meridian time, except by Navy station along the Pacific coast and Hawaii where they are taken at dawn. NOTE.—None of the means included in this table are based on less than 15 surface or 5 standard-level observations. | Table 1a | -Mea | n fr | ee-ai | r ba | rom | etric | press | ures | (P.) | in rad | iosona | les o | lurin | g No | vembe | r 19 | 939 | | | hum | iditie | 8 (R | . H.) | in 1 | perce | nt ob | tained | l by | |----------------------------------|---|---|---|--|---|--|---|---|--|---|---|--|--|--
--|--|---|---|--|---|--|--|--|--|---|--|--|--| | | Albuq | uerqi | ue, N. | Mea | r. | Atla | anta, G
298 m.) | a. | T | Shrev | Station
eport, L | | | Billin | s in met
gs, Moi
089 m.) | | | smarc | rel
2k, N. D
38 m.) | ak. | 1 | Boise, | , Idaho
i m.) | | F | uffalo
(219 | , N. Y.
m.) | | | Altitude
(meters)
m. s. l. | Number
of obs. | P. | 1 m.) | R.
H | Number | | | R | Number | | | R | Number | | | R.H | Number | | T. | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | Р. | т. | R.
H. | | Surface 500 | 30
- 30
- 30
- 30
- 29
- 29
- 29
- 30
- 30
- 30
- 30
- 29
- 29
- 29
- 29
- 29
- 29
- 29
- 30
- 30
- 30
- 30
- 30
- 30
- 30
- 30 | 843
805
757
712
628
552
484
422
367
317
273
367
317
123
104
89
76 | 0.
-4.
-10.
-18.
-26.
-34.
-42.
-48.
-53. | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 33
 | 30 930 930 930 830 830 830 630 630 630 229 4229 2229 2229 1229 1227 1127 1127 119 | 65 8
08 7
54 8
03 3
755 0
09 —1 | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 78
33
88
82
82
82
82
82
82
84
84
84
84
84
84
84
84
84
84
84
84
84 | 22 1, 01
222 96
222 91
222 85
221 72
17 75
18 63
17 55
11 42
9 33
6 32 | 55 10. 8. 8. 66 7. 15. 5 5. 5 5. 5 5. 5 7. 4. 27. 2 2. 2. 201. 147. 7. 85 -13. 25 -19. 7125. 24 -32. | 3 77 39 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 33
35
37
31
31
31
31
31
31
31
31
31
31
31
31
31 | 00 85
00 85
00 87
00 70
00 62
00 45
00 45
00 45
00 15
00 | 22 8.
22 6.
24 2.
28 -0.
29 -13.
30 -20.
9 -28.
30 -32.
3 -37.
4 -45.
90 -52.
90 -52.
90 -52.
90 -52.
91 -61.
91 -61.
91 -61.
93 -61.
94 -61.
95 -61.
96 -61.
97 -61.
97 -61.
98 -61.
98 -61.
99 -61.
90 - | 53 3 3 3 3 3 6 6 3 3 3 3 5 6 6 4 4 3 9 5 5 3 3 0 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 | 0 96
0 90
0 85
80
80
80
80
80
80
80
80
80
80
80
80
80 | 5 4.8.1
1 3.6
0 2.6
1 -0.2
1 -0.2
1 -9.2
1 -9.2
4 -31.6
9 -39.6
9 -39.6
-60.0
0 -60.0
9 -60.0
9 -60.0
9 -60.0
9 -60.0
9 -60.0 | 3 548
3 483
2 388
7 344
5 29
27
28
3 27
28
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 30
30
30
30
30
30 | 908
854
803
755
709
625
549
480
418
363
313
269
230
196
167
142
120
102
87
74 | 1. 8
-1. 6
-7. 6
-13. 8
-21. 3
-29. 8
-38. 9
-45. 8
-61. 4
-62. 6
-62. 6
-62. 6
-62. 6
-61. 6 | 71
556
51
43
43
42
41
40
40 | 30
29
29
29
29
29
29
29
27
27
27 | | 1. 3
-1. 7
-2. 6
-3. 9
-8. 3
-14. 1
-20. 2
-27. 6
-35. 3
-42. 2
-48. 3
-54. 4
-56. 8
-61. 6
-61. 8 | 73
71
54
50
50
50
46
45
44
44
44
44
44
45 | | | Charl | eston | , 8. C | , | | | er, Colo | . | | El Pas | ns and e | leva | tions i | Ely | Nev. | ve se | | rbank | s, Alask | a | | Joliet | | - | Ju | meau, | Alaske | ——
a | | Altitude
(meters)
m. s. l. | (| 14 m | .) | l | Number of obs. | Ī | 16 m.) | R. | nber
obs. | | 4 m.) | R. | Number
of obs. | | 9 m.) | R. | Number
of obs. | (152 | 1 | R. | Number
of obs. | (178 | т. | R.
H. | Number
of obs. | (49)
P. | m.)

T. | R.
H. | | 2 | of obs. | • | т. | R.
H. | Nun
of o | P. | T. | R.
H. | Number
of obs. | P. | т. | R.
H. | Jo
Jo | P. | T. | R.
H. | N
N
N | P. | т. | R. | n o | P. | т. | н. | N o | P. | T. | н. | | Surface | 30 94
30 84
30 88
30 87
30 77
29 55
29 55
29 44
29 33
229 22
229 22
229 22
229 22
24 14
24 14
25 15
26 15
26 15
27 16
28 | 33
37
54
55
10
26
51
 | 6. 5
10. 6
9. 0
7. 0
0. 5
3. 0
0. 5
4. 10. 6
17. 3
24. 0
38. 7
45. 3
38. 7
45. 3
66. 6
66. 8
66. 8
66. 8
66. 8
66. 8 | 86
63
57
55
49
45
40
34
33
33
33
32
32 | 30
30
30
30
30
30
30
30
30
30
29
28
28
26
24
20
15 | 843
804
757
711
627
552
483
422
366
316
272
233
199
144
123
104
89
76 | 6. 2
4. 4
1. 1
-5. 4
-11. 8
-10. 3
-27. 0
-35. 1
-43. 5
-50. 2
-50. 2
-60. 9
-61. 7
-62. 7
-63. 5
-63. 2 | 52
46
44
43
44
42
41
40 | 30
30
30
30
30
30
30
30
30
30
30
30
30
29
29
28
25
22
12 | 887
856
804
757
712
628
553
485
423
368
319
275
236
2072
172
146
124
105
89
75
64 | 7. 4
9. 3
7. 1
4. 2
1. 7
-10. 0
-17. 2
-24. 7
-31. 8
-38. 9
-46. 9
-61. 4
-61. 4
-64. 0
-68. 4
-66. 2 | 59
59
60
60
52
44
37
36
36 | 30
30
30
29
26
26
26
26
26
27
27
22
21
11
11 | 814
805
757
711
627
552
483
422
233
366
316
272
233
169
144
122
104
88
75 | -1.9 1.3 4.0 1.3 -5.1 -11.6 -19.0 -27.1 -35.6 -43.5 -51.1 -57.1 -60.2 -61.1 -61.6 -62.8 -63.5 -63.2 | 61
 | 29
29
29
29
29
29
29
27
27
27
27
27
25
24
22
20
15
13
8 | 987
944
883
827
774
725
678
592
514
445
384
329
282
241
207
177
151
130
112
95
81 | -17. 7
-16. 6
-13.
8
-12. 6
-13. 3
-16. 0
-18. 8
-25. 5
-32. 6
-39. 8
-47. 0
-52. 7
-55. 3
-51. 3
-50. 7
-60. 9
-51. 0
-51. 0
-51. 0 | 68
72
72
70
68
66
63
63
63
63
58 | 29 1
29 29 29 29 29 29 29 29 29 29 28 28 26 25 24 6 6 6 | 411
356
306
262
225
192
164
139
118 | 1. 0
3. 2
1. 0
0. 3
-2. 1
-4. 9
-12. 2
-18. 6
-25. 9
-47. 8
-53. 0
-57. 4
-68. 0
-60. 8
-61. 0
-60. 9 | 87
69
62
55
55
52
50
49
44
41
39
39 | 30 130 30 30 29 29 28 24 21 19 15 13 12 11 9 7 7 6 | 1,000
946
889
834
783
783
784
687
601
526
456
394
339
290
248
213
182
156
134
115 | 3.6
1.7
-1.6
-4.5
-7.2
-10.2
-13.2
-19.5
-26.3
-33.9
-41.5
-48.2
-52.5
-53.3
-49.8
-49.6
-49.6 | 84
82
79
76
73
73 | | | Lakeh | | | 1 | м | | d, Oreg | . | | Miam | Stations
i, Fla. | and | | пеар | olis, Mi | | | ashvil | le, Tenr | 1, | C | aklan | d, Cali | ſ. | Okla | | City, (| Okla. | | Altitude
(meters)
m. s. l. | | 9 m.) | T | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | P. | T. | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | Р. | m.)
T. | R.
H. | Number
of obs. | Р. | т. | R.
H. | | Surface | 28 1, 01:
28 96
96 98
27 84:
27 79:
27 70:
27 61:
27 54:
28 47:
29 20 26:
47:
20 26:
47:
21 22 30:
22 30:
22 30:
21 6:
21 6:
21 6:
22 16:
23 16:
24 6:
25 16:
26 17 22:
27 6:
28 17 22:
28 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2.3
0.5
-0.2
-1.7
-3.2
-3.2
-1.7
0 23.9
17.0
23.9
11.2
16.2
54.9
56.7
58.1 | 73
61
62
55
54
55
54
55
54
55
63
67
66 | 29
29
29
29
29
29
29
29
29
28
28
28
28
26
20
19
16
15
13
8 | 974
962
905
852
802
754
708
625
549
481
197
231
197
168
122
104
88
75 | 4. 4
5. 9
9. 2
8. 4
5. 0
0. 6
-5. 1
-19. 3
-35. 5
-43. 2
-57. 7
-62. 6
-62. 6
-63. 2
-62. 4 | 83
78
56
447
42
37
36
33
32
31 | 29
29
29
29
29
29
29
29
29
29
29
29
29
2 | 1, 017
961
908
854
804
757
713
631
490
430
376
376
372
284
245
2210
179
109
92
92
86
65
54
7 | 18. 2
18. 1
15. 0
12. 2
11. 0
9. 5
7. 2 0
-3. 9
-9. 5
-15. 7
-22. 7
-30. 5
-38. 2
-45. 8
-65. 5
-69. 9
-72. 2
-72. 3
-72. 2
-72. 3
-69. 4
-69. 4
-69. 4 | 87
77
78
73
65
54
45
39
33
34
32
31
30
28 | 30
30
30
30
30
30
30
30
30
30
30
30
30
3 | 992
963
906
906
851
800
751
800
619
543
474
412
356
307
192
203
225
192
119
101
86
73 | 0.6 3.0 4 0.6 -1.5 -4.2 -6.3 -11.5 -33.6 -41.5 -48.6 -54.2 -57.6 -58.7 -58.6 4 -59.8 | 70
66
59
52
48
49
47
46
44
43 | 29
29
29
29
29
29
29
29
28
28
27
26
25
20
17
16
14
13
12
10
8 | 1, 003
965
908
854
802
754
478
623
547
478
362
313
198
269
231
198
169
144
122
104
88
75 | 4. 2
6. 4
4. 6
3. 2
1. 3
-0. 8
-3. 4
-8. 9
-15. 0
-21. 4
-28. 3
-35. 7
-42. 5
-48. 2
-52. 6
-50. 5
-60. 0
-65. 4
-85. 7
-63. 4 | 78
68
62
55
50
49
49
48
47
44
42
42 | 22222222222222222222222222222222222222 | 1. 019
960
905
853
803
755
710
627
551
483
234
422
367
317
273
234
199
170
144
123
104
88
75
64 | 8.9 13.7 12.8 10.5 8.4 5.8 2.8 -3.7 -10.3 -17.5 -33.9 -42.0 1 -50.8 -60.8 -62.4 -63.1 -65.3 -65.3 -65.3 | 58
44
36
31
28
25
25
24
23
22
22
22
22 | 30
30
30
30
30
30
30
30
29
28
28
28
22
28
27
26
21
6 | 979
965
909
885
804
756
550
365
315
221
232
198
144
122
104
88
74
63 | 6. 6
8. 1
7. 3
5. 3
3. 1
1. 6
-0. 5
-6. 1
-12. 2
-19. 0
4. 34. 0
-54. 4
-41. 8
-49. 0
-54. 4
-65. 1
-62. 7
-65. 1
-62. 6 | 65
59
52
47
44
40
36
34
35
34 | Table 18.—Mean free-air barometric pressures (P.) in mb., temperatures (T.) in ° C., and relative humidities (R. H.) in percent obtained by radiosondes during November 1939—Continued | | | maha | , Nebr. | | I | hoen | ix, Ariz | | <u> </u> | St. Lo | uis, Mo | | 1 | n Ant | in meter
onio, Te | | Sa | ult St | e. Mari | ie, | 8 | | ie, Wasl | | W E | | ton, D. | C.1 | |----------------------|---|--|---|--|--|---|--|--|--|---|--|--|---|---|---|--|---|--|--|--|---|--|---|--|---
---|---|-----| | Altitude
(meters) | | (300 | m.) | | | (339 | 9 m.) | | ļ | (176 | 3 m.) | | | (174 | m.) | | I | Aich. | (221 m.) |) | 1 | (593 | 7 m.) | | | (7 | m.) | | | m. s. l. | Number
of obs. | P. | T. | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | P. | Т. | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | P. | т. | R.
H. | Number
of obs. | P. | T. | F | | Surface | 30
30
30
30
30
30
30
30
30
30
30
30
30
3 | 989
965
968
854
802
754
478
478
416
360
311
227
228
194
166
141
120
102
87 | 2.7
5.1
5.2
3.0
1.1
-1.3
-9.3
-15.9
-23.8
-39.4
-39.4
-56.2
-58.2
-59.2
-60.3
-61.5
-61.5 | 68
61
53
50
46
42
41
38
36
35
35 | 29 29 29 29 29 29 29 29 29 29 29 29 29 2 | 977
960
960
853
803
756
552
484
423
368
318
274
111
124
125
89
75
64
64
54 | 13. 4
17. 2
16. 8
13. 4
9. 6
6. 4
-3. 0
-9. 9
-17. 7
-25. 6
-33. 4
-41. 0
-48. 0
-53. 7
-60. 3
-62. 3
-68. 0
-66. 6
-65. 6
-65. 6 | 61
57
49
47
48
49
48
44
40
40
40
39 | 30
30
30
30
30
30
30
30
29
29
28
28
26
24
23
20
18 | 1, 005
966
908
854
802
754
708
623
546
477
415
359
310
266
228
194
166
141
120
102
87 | 4. 9
6. 1
4. 1
2. 3
0. 5
-1. 8
-4. 5
-10. 1
-16. 6
-31. 8
-39. 4
-46. 5
-51. 7
-55. 5
-59. 6
-61. 1
-62. 4
-62. 9
-62. 7 | 71
62
60
57
57
54
53
52
53
50
46
43
40 | 29
29
29
29
29
29
29
29
29
29
29
29
29
2 | 1, 004
965
910
857
806
758
713
630
555
426
372
2279
240
205
149
126
107
91
765
655 | 11. 6
13. 2
11. 0
8. 8
6. 9
4. 9
2. 8
-1. 3
-7. 0
-13. 4
-20. 9
-28. 2
-35. 9
-43. 2
-50. 4
-64. 5
-66. 8
-68. 6
-67. 9
-66. 5 | 71
69
71
68
64
62
58
48
44
43
43
43 | 30
30
30
30
30
30
30
30
30
30
29
28
24
23
21
20
16
12
8 | 995
961
902
847
795
644
537
469
406
351
302
2258
220
188
160
136
116
98 | -1. 2
-1. 9
-2. 9
-3. 2
-4. 6
-9. 1
-14. 6
-21. 1
-28. 5
-36. 3
-43. 8
-51. 0
-50. 6
-60. 5
-60. 5
-60. 6
-61. 2 | 85
86
78
65
59
57
56
56
58
57 | 30
30
30
30
30
30
30
28
28
28
28
28
28
27
26
27
26
21
33
6 | 952
906
852
801
707
623
416
361
2267
229
195
166
141
120
103
87
74
64 | 1. 9 5. 8 5. 8 5. 3 2. 9 0. 2 -2. 7 -8. 5 -14. 8 -21. 7 -29. 5 -37. 5 -45. 6 -53. 2 -58. 8 -61. 6 -60. 9 -61. 0 -60. 9 -61. 0 -59. 0 -57. 9 | 88
70
60
57
57
58
55
49
46
45
45 | 27
27
27
27
27
27
27
27
27
26
24
19
17
16
13
11
9 | 1, 022
962
905
851
799
750
705
620
544
476
414
359
310
267
229
195
167
142 | 4. 5
4. 2
2. 7
1. 5
0. 0
-2. 2
-4. 3
-9. 8
-15. 8
-22. 6
-29. 7
-37. 4
-44. 7
-54. 7
-50. 2
-54. 7
-60. 1
-61. 6 | | ³ U. S. Navy. Observations taken about 1 a. m. 75th meridian time, except by Navy stations along the Pacific coast and Hawaii where they are taken at dawn. Nors.—None of the means included in this table are based on less than 15 surface or 5 standard-level observations. Number of observations refers to pressure only as temperature and humidity data are missing for some observations at certain levels, also, the humidity data are not used in daily observations when the temperature is below -40° C. ### LATE REPORT FOR JULY 1939 | | San | Antonio, | Tex. (174 | m.) | | Sar | Antonio, | Tex. (174 | m.) | |---------------------------|---|---|--|--|---------------------------|----------------------------------|---|--|-------| | Altitude (meters) m. s.l. | Number of obs. | Р. | т. | R. H. | Altitude (meters) m. s.l. | Number
of obs. | P. | т. | R. H. | | Surface | 24
24
24
24
24
24
24
24
24
24
24
24
24
2 | 995
958
906
855
806
761
718
637
563
497
438
383
334 | 25. 2
24. 5
23. 4
21. 7
19. 0
15. 9
12. 8
6. 8
0. 8
-4. 7
-10. 9
-17. 7
-24, 7 | 78
79
65
58
54
53
50
47
43
41
39
38 | 10,000 | 23
23
23
23
22
22 | 291
252
218
187
160
136
115
97
82
69
59 | -32. 3
-39. 8
-47. 3
-54. 5
-60. 9
-66. 3
-69. 4
-68. 7
-68. 0
-63. 3
-60. 8 | | Table 2.—Free-air resultant winds based on pilot-balloon observations made near 5 p. m. (E. S. T.) during November 1939 [Directions given in degrees from North (N=360°, E=90°, $8=180^\circ$, W=270°)—Velocities in meters per second (superior figures indicate number of observations] | Altitude
(meters) | Abil
Te
(537 | x. ' | Albud
Qu
N. M
(1,554 | e,
Iex. | Atlar
Gr
(302 | 1. | Billin
Mon
(1,095 | nt. | Boi
Ida
(850 | ho | Breok
N.
(15) | Υ. ΄ | Brow
ville,
(7 n | Tex. | Buff
N.
(220 | Υ. | Burl
ton,
(132 | Vt. | Char
ton, 8
(18) | 8. C. | Cheve
Wy
(1,873 | 70. T | Chic
III
(192 | ı, | Cinc
nati,
(157 | Ohio | |----------------------|---|--|--|--|---|--|-------------------------|---|---|--|--|---|---|--|-------------------------|--|----------------------|---------------------------------|---|--|---|----------------------|--|--|-----------------------|--------------------| | m. s. 1. | Di-
rec-
tion | Ve-
loc-
ity | Surface | 5736
28339
28339
28348
28348
27934
29340
29719
28417
28413 | 0. 2
0. 7
2. 4
3. 9
5. 2
6. 4
7. 2
8. 5 | 168 ²⁹
146 ²⁸
224 ²⁷
263 ²³ | 0. 7
1. 0
1. 3
0. 5
1. 3
3. 0
4. 7
5. 4
10. 4
17. 3 | 302 ³⁸
308 ³⁸
323 ³⁷
297 ²⁸
283 ²⁴
285 ³³
287 ¹⁹
276 ¹⁸
280 ¹⁷
276 ¹⁵
277 ¹⁴ | 1. 0
1. 0
2. 0
3. 8
5. 8
7. 1
9. 8
12. 5
14. 6
22. 0
30. 2 | | 3. 4
5. 7
6. 6
7. 4
8. 6
10. 2
8. 8
7. 5
7. 0 | 17929
24328
23525
25122
28016 | 1. 2
1. 2
1. 1
2. 8
2. 7
3. 3 | 322 ²⁸
314 ²⁶
302 ²³
305 ¹⁹ | 5. 3
5. 5
6. 5
8. 0
9. 5
10. 9 | 5129
4127
2726
24228
26619
28714 | 2. 4
2. 9
2. 0
0. 3
0. 4
2. 5
3. 3
7. 3 | 29220
31718
33710 | 2. 2
2. 8
5. 9
7. 0
7. 5
4. 5
2. 6 | 30713
30512 | 4.6
6.3
7.1
8.0
9.0 | 35428
34289
33627
32333
30522
30122
28319
27814
27512 | 1. 6
2. 9
3. 2
4. 0
5. 5
6. 7
7. 4
8. 6 | 27729
27729
2929
29429
30127
30826
31326
3431
33929
30414
29510 | 3. 4
5. 0
6. 3 | 27018
28226
28713
28720
29619
29919 | 2.6
3.7
6.6
9.2
9.3
9.5
10.0
14.2 | 29228 | 6.3
8.5
11.3 | Table 2.—Free-air resultant winds based on pilot-balloon observations made near 5 p. m. (E. S. T.) during November 1939—Continued | TABLE | | 1-100- | 1 | - II | | | | 1 | | - î | | (1 | | | | (1 | | (1 | | | | | | . 1 | | — | |----------------------------------
--|---|---|--|---|---|---|--|---|------------------------------|--|--|---|-------------------------|---|--|---|--------------------------------------|--|---|----------------------------|--|---|--|---|--| | Altitude
(meters)
m. s. l. | El Pa
Te
(1,196 | x. ' | Far
N. D
(283 | go,
lak.
m.) | Gree
bor
N. C
(271 | o, | Hav
Moi
(766 | nt. | Hous
Te
(21 r | ĸ. | Huro
8. Do
(393 1 | sk. | Las V
Ne
(570 | v. | Litt
Roc
Arl
(82 r | k, | Medi
Ore
(410 | g. | Miai
Fla
(10 n | և ˈ | Minn
oli
Mir
(261 | s, in. | Nas
vill
Ten
(194 i | e,
n. | Ne
Orlea
La
(19 I | ans, | | | Direction | Velocity | Surface | 27513 | 2. 4
2. 4
1. 5
1. 2
2. 7
4. 1
6. 0
16. 5 | 21630
22930
24632
26939
27236
28532
28532
28533
30913
30913
28910 | 9. 1
15. 3
10. 6 | 92028
33328
29824
31624
30528
29521
28718
29216
29118 | 8. 1
10. 6
11. 9
15. 3
16. 6 | 26030
25230
25730
27130
28333
28132
27531
28816 | 3. 7
6. 8
10. 1
11. 2
10. 6
9. 6
8. 2
8. 2 | 9339
6336
4133
33331
31231
30718
30117
29818
29213
29311 | 7. 5
9. 6
11. 5 | 297 ²⁷
298 ²⁷ | 1. 8
1. 8
3. 6
5. 8
7. 1
7. 6
7. 7
9. 2
11. 1
12. 0
12. 9
14. 6
13. 6
13. 3 | 30422 | 11. 1
12. 6
11. 9 | 29912 | 1. 3
2. 6
2. 9
1. 3
1. 7
3. 9
5. 8
10. 4
14. 2 | 1030
34330
13730
17430
220739
22773
25232
24923
2523
2523
2523
2523
2523
2523
2523
2 | 3. 7
4. 0
5. 4
7. 3
6. 5 | 3880
4120
4829
4328
3822
29016
29714
27411
27411 | 3. 5
7. 3
7. 0
4. 8
2. 6
2. 9
6. 3
9. 0
14. 6 | 30320 | 7.3
7.0
8.6
8.4
10.2 | 138
34286
34286
29014
28822
29931
29710
29717
29214 | 1.6
1.3
1.1
2.2
4.9
6.2
7.6
9.1
11.0 | 0
1419
5539
1938
35534
31331
30019
29118 | 2. 2
2. 2
1. 5
3. 4
5. 6 | | Altitude
(meters)
m. s. l. | Oakl
Ca
(8 1 | lif. | Oklal
City,
(402 | Okla. | Oma
Ne
(306 | br. | Ret
Ne
(1,346 | v. | St. L
M
(170 | 0. | Salt 1
City,
(1,294 | Utahl | San I
Ca
(15 | lií. | San J
P.
(16 | R. | Sault
Ma
Mic
(198 | rie,
ch. | Seat
Wa
(14 1 | sh. | Spok
Wa
(603 | sh. | Wast
ton, I |). C. [| Wins
Ar
(1,488 | iz. | | | Direction | Velocity | Direction | Velocity | Direction | Velocity | Direction | Velocity | Dfrection | Velocity | Direction | Surface | 193
173
3122
2762
3283
3382
3132
2742
2804 | 2, 1
1, 3
0, 8
0, 3
1, 0
2, 2
2, 2
4, 0 | 3527
827
33127
28826
29122
29122
30622
31722 | 2. 9
4. 2
6. 4
8. 1
9. 8
12. 6
7 15. 5 | 31321 | 1, 3
2, 7
4, 8
6, 6
8, 1
9, 2
9, 7
11, 1
14, 2
17, 9
18, 2
18, 9 | 15830
20030
22820
26433
28438
29027
28324
28313
29013 | 0. 4
1. 7
2. 0
2. 3
2. 9
3. 5
4. 1
5. 1
8. 7 | 29528
26327
27824
28032
29119
29616
30711 | 3. 2
4. 5
6. 9
8. 4 | 26930 | 1. 7
1. 0
1. 5
1. 8
2. 7
3. 4
3. 6 | 8526
7526
5322
27515
28815
29215 | 6.1 | 10328
12225
11023
12021
11115
11016
21111 | 4.1
2.8
2.8
2.5
2.5
1.7 | 28021
29314
29412
29811
30910 | 4.5
5.3 | 20425
19148
19172
19221
1982
20718
22013
22113 | 7. 8
8. 1 | 2342 | 2.3
5.7
7.3
7.5
9.0
9.3 | 29622 | 5. 2
8. 8 | 6528
11633
1532
025
19325
32422
31122
29619
28012
28012
27510 | 1.9
1.4
1.4
0
0.3
1.8
4.0
7.6
12.4
13.9 | Table 3.—Maximum free air wind velocities (M. P. S.), for different sections of the United States based on pilot-balloon observations during November 1939 | | | Surface | to 2,50 | 0 mei | ters (m. s. l.) | | Between 2, | 500 and | 5,000 | meters (m. s. l.) | | Abo | ve 5,000 | mete | rs (m. s. l.) | |--|------------------|---|--|--|---|---|---------------------------|--|---|--|---|------------------------|---|---------------------------------|--| | Section | Maximum velocity | Direction | Altitude (m.) m. s. l. | Date | Station | Maximum velocity | Direction | Altitude (m.) m. s. l. | Date | Station | Maximum velocity | Direction | Altitude (m.) m. s. l. | Date | Station | | Northeast 1 East Central 2 Southeast 3 North Central 4 Central 4 South Central 4 North Central 4 North Central 5 South Central 5 Southwest 6 | 41.3
28.9 | NW
SW
NE
S.W
SSW
W
NNE
WSW | 1, 690
810
1, 590
1, 240
1, 390
1, 940
760 | 9
10
3
26
10
9
10
28
9 | Harrisburg, Pa. Cincinnati, Ohio Key West, Fla. Rapid City, S. Dak Indianapolis, Ind. Oklahoma City, Okla. Havre, Mont. Oakland, Calif. El Paso, Tex. | 45. 2
45. 8
40. 4
41. 6
48. 8
31. 4
43. 5
33. 7
49. 0 | NW
NW
NW
NW
W | 4, 570
4, 950
5, 000
5, 000
5, 000
3, 950
3, 220 | 14
8
24
7
8
24
10
7
5 | Buffalo, N. Y. Louisville, Ky. Atlanta, Ga. Huron, S. Dak. Indianapolis, Ind. Oklahoma City, Okla. Butte, Mont. Cheyenne, Wyo Las Vegas, Nev | 55. 0
60. 0
68. 2
66. 4
64. 0
75. 2
44. 0
58. 5
52. 0 | W
WSW
WSW
WNW | 10, 400
12, 750
7, 700
11, 030 | 20
16
13
27
10
5 | Akron, Ohio
Greensboro, N. C
Atlanta, Ga.
Rapid City, S. Dak.
Wichita, Kans
Abilene, Tex.
Billings, Mont.
Redding, Calif.
Albuquerque, N. Mex. | ¹ Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania. and northern Ohio. 1 Delaware. Maryland, Virginia, West Virginia, southern Ohio, Kentucky, eastern Tennessee, and North Carolina. 2 South Carolina. Georgia, Florida, and Alabama. 4 Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota. 5 Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri. ⁶ Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and western Mississippi, Alaman Tennessee. Montana, Idaho, Washington, and Oregon. Wyoming, Colorado, Utah, northern Nevada, and northern California. Southern California, southern Nevada, Arizona, New Mexico, and extreme west Table 4.—Mean altitudes and temperatures of significant points identifiable as tropopauses during November 1939, classified according to the potential temperatures (10-degree intervals between 290° and 409° A.) with which they are identified. (Based on radiosonde observations) | | | | | 1 | | | <u> </u> | | | | | | | | (150000 | | | | | | | |--|--|--|---|---
--|--|---|--|---|--|--|--|--|---|--|---|--|--|---|---|---| | | All | ouquer
N. Me | que,
x. | At | lanta, | Ga. | Bill | ings, N | lont. | Bisma | arck, N | l. Dak. | Во | oise, Id | aho | But | ffalo, N | I. Y. | Cha | rleston | , s. c. | | Potential temperatures, ° A | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | | 290-299
300-309
310-319
320-329
330-339
340-349
550-359
360-369
370-379
380-389
390-399
400-409
Weighted means | 1
15
31
15
8
7
7
6
7
7
3 | 8. 2
8. 6
10. 0
11. 7
12. 2
13. 0
13. 9
14. 8
15. 5
16. 4
11. 8 | °C45. 0 -42. 2 -50. 0 -58. 4 -59. 6 -60. 9 -65. 3 -67. 0 -66. 0 -66. 7 -55. 8 | 1
10
25
20
14
8
13
5
6
5
7 | 7.8
8.0
9.8
11.3
12.3
12.9
14.1
14.7
15.5
16.3
16.5 | °C41.0 -39.0 -48.6 -55.8 -59.7 -59.8 -65.5 -65.4 -68.0 -69.3 -56.9 | 18
38
13
4
4
1
1 | 9. 2
10. 7
12. 3
12. 6
13. 2
13. 4
13. 6 | °C49, 4 -57, 3 -64, 6 -65, 8 -63, 8 -59, 0 -57, 0 -57, 5 | 5
27
32
12
5
2
1 | 7.3
9.2
10.5
11.7
12.5
13.0
13.5
13.9 | °C. -39. 4 -50. 5 -56. 9 -62. 6 -63. 2 -61. 0 -62. 0 -55. 2 | 3
27
35
19
5
6
2
1
2
2
3 | 7. 4
9. 2
10. 9
11. 9
12. 5
13. 1
13. 6
14. 5
15. 1
15. 9
11. 2 | C. -38.3 -49.5 -58.3 -63.4 -64.6 -63.5 -65.0 -65.0 -67.6 | 2
18
24
27
11
3
1
1
2 | 6. 0
7. 3
9. 3
10. 5
11. 5
12. 3
13. 6
13. 7
14. 4
15. 3
15. 3 | °C35.3 -40.1 -52.5 -57.0 -61.2 -61.7 -06.0 -64.0 -67.5 -61.0 | 11
15
21
12
8
4
7
7
7
2
3 | 8. 1
9. 3
11. 2
12. 3
13. 6
14. 7
16. 3
16. 6
12. 0 | *C38.4 -41.9 -53.0 -58.8 -65.0 -70.0 -66.4 -70.6 -68.5 -65.7 | | Mean potential temperature (weighted) | | 344. 3 | | | 347. 3 | | | 328. 4 | | | 324. 3 | | | 331. 8 | | | 324, 0 | | | 345. 6 | | | | De | nver, (| Colo. | El | Paso, | Tex. | F | ly, Ne | PV. | J | oliet, I | H. | Lake | burst, | N. J. | Med | dford, | Oreg. | M | iami, F | la. | | Potential temperatures, ° A | Number of cases | Mean altitude (km.) m. s. l | Mean temperature | Number of cases | Mean altifude (km.) m. s. l | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l | Mean temperature | Number of cases | Mean altitude (km.) m. s. l | Mean temperature | Number of cases | Mesn altitude (km.) m. s. l | Mean temperature | Number of cases | Mean altitude (km.) m. s. l | Mesn temperature | | 200-290
300-309
310-319
320-329
330-339
340-349
350-359
360-369
370-379
380-389
390-399
400-400
Weighted means. | 19
36
18
11
3
2
1
3
3
3 | 8. 9
10. 3
11. 7
12. 4
13. 2
14. 0
14. 8
15. 4
15. 8
16. 2
11. 2 | °C-
-45. 2
-53. 2
-60. 7
-61. 0
-62. 7
-63. 0
-65. 0
-66. 3
-65. 3
-65. 3 | 1
7
18
23
11
10
11
8
10
6
4 | 7. 0
7. 4
9. 8
11. 6
12. 2
13. 5
15. 2
15. 9
16. 0
16. 7
12. 6 | °C33.0 -31.9 -45.8 -58.5 -64.3 -67.8 -69.2 -70.3 -67.2 -68.2 -58.6 | 1
16
31
16
7
5
5
1
3
5 | 8. 5
8. 3
10. 3
11. 5
12. 5
13. 6
14. 4
15. 3
15. 6
16. 3
11. 4 | °C48.0 -39.8 -54.6 -59.1 -63.3 -63.9 -61.6 -61.0 -65.3 -64.8 -65.8 | 2
6
19
22
11
3
2
4
4
3
3 | 5. 2
7. 9
9. 3
10. 5
11. 1
12. 1
13. 4
13. 7
14. 0
14. 4
14. 7
16. 0
10. 7 | °C30.0 -39.3 -52.0 -57.2 -60.0 -67.0 -62.2 -61.0 -60.0 -58.0 -64.5 -54.8 | 1
14
6
4
1 | 8.0
9.2
10.8
11.6
11.2 | °C44.0 -51.0 -59.0 -60.5 -52.0 -61.0 | 2
3
9
36
15
1
3
4
2
2
3 | 6. 5
7. 6
8. 5
10. 7
11. 8
13. 0
12. 9
13. 8
14. 8
15. 0
16. 0 | °C38.5 -40.7 -41.9 -56.9 -60.8 -66.0 -61.3 -63.0 -64.5 -65.0 -68.3 | 13
17
18
13
12
7
6
5 | 10. 9
12. 5
13. 9
15. 8
16. 3
16. 8
17. 5
13. 3 | -47. 4
-58. 0
-65. 7
-73. 3
-73. 0
-73. 3
-73. 4
-64. 7 | | Mean potential temperature (weighted). | | 335. 1 | | | 350. 9 | | | 338. 5 | | | 331. 6 | | | 323. 6 | | | 332. 8 | · · · · · · · · · · · · · · · · · · · | | 362. 0 | | | | M | inneap
Minn | olis, | Nasl | iville, | Tenn. | Oak | land, | Calif. | Okia | homa
Okla. | | Om | aha, l | Nebr. | Pho | oenix, | Ariz. | St. | Louis, | Mo. | | Potential temperatures, ° A | Number of cases | Mean altitude (km.) m. s. l. | Mesa temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean sltitude (km.) m. s. l. | Mean temperature | | 290-299
300-309
310-319
320-329
330-339
340-349
350-359
360-369
370-379
390-389
390-399
400-409
Weighted means
Mean potential temperature
(weighted) | 1
7
35
26
8
4 | 6. 4
7. 8
9. 3
10. 7
11. 7
12. 3
13. 7
15. 8
15. 4
10. 1 | °C39.0 -46.1 -51.3 -59.3 -62.0 -63.0 -65.0 -65.0 -62.0 -55.2 | 2
16
16
13
6
2
2
4
1
3 | 6. 4
8. 5
9. 9
11. 0
12. 8
13. 7
14. 8
15. 4
15. 2
16. 5 | °C33.0 -42.5 -49.8 -52.7 -64.3 -61.0 -65.5 -67.2 -61.0 -66.0 | 11
42
24
9
7
3
4
4
6
2 | 8. 3
10. 3
11. 8
12. 8
13. 1
13. 8
14. 6
15. 4
16. 1
16. 7
11. 7 | °C. -39. 2 -53. 0 -61. 5 -64. 8 -61. 7 -64. 0 -67. 8 -68. 0 -57. 3 | 11
28
12
14
3
5
8
5
2
7 | 8. 3
10. 2
11. 7
12. 6
13. 1
14. 1
14. 7
15. 3
15. 4
16. 5
12. 0 | °C. -40. 5 -50. 1 -62. 4 -63. 0 -64. 6 -66. 2 -64. 0 -65. 2 | 7
29
31
11
6
2
1
2 | 7. 8
9. 0
10. 3
11. 6
12. 3
13. 4
13. 0
14. 4
15. 4
16. 2
10. 4 | °C42.6 -48.2 -57.8 -60.9 -61.0 -64.0 -55.0 -64.5 -63.7 -62.5 -54.8 | 12
21
18
9
10
4
8
2
4
8 | 8. 1
10. 1
11. 0
12. 5
13. 1
14. 1
14. 6
15. 8
16. 2
16. 6
12. 0 | °C. -37. 8 -51. 2 -53. 8 -61. 6 -60. 3 -63. 2 -64. 8 -70. 5 -68. 0 -56. 1 | 1
6
17
22
13
2
2
3
5
5
5
1
1
2 | 13. 4
14. 3
14. 8 | °C.
-45. 0
-43. 5
-40. 8
-55. 8
-62. 5
-57. 0
-59. 7
-61. 2
-62. 0
-66. 0
-67. 5
-56. 0 | Table 4.—Mean altitudes and temperatures of significant points identifiable as tropopauses during November 1939, classified according to the potential temperatures (10-degree intervals between 290° and 409° A.) with which they are identified. (Based on radiosonde observations)—Continued | | San | Antonio | , Tex. | Sault | Ste. I
Mich. | Marie, | Spol | rane, W | ash. | |--|---|--|--|--------------------------|---|--|--|---|---| | Potential temper-
atures, °A. | Number of cases | Mean altitude (km.) m. s. l. | Mesn temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | Number of cases | Mean altitude (km.) m. s. l. | Mean temperature | | 200-299 300-309 310-319 320-329 330-339 340-349 350-359 360-369 370-379 380-389 400-409 Weighted Means. Mean potential temperature (weighted) |
13
21
17
15
6
7
7
5
2 | 9. 9
11. 3
12. 5
13. 5
14. 6
15. 2
15. 9
16. 6
12. 9 | -46.5
-53.9
-63.1
-63.7
-68.2
-08.3
-69.4
-70.6
-66.0
-59.9 | 1
11
22
16
5 | 6. 6
8. 3
10. 0
10. 9
11. 9
13. 6
15. 6 | °C43.8 -51.2 -58.9 -62.9 -64.0 -56.0 -67.0 | 1
1
14
29
13
5
3
2
2
2
1 | 6. 7
7. 8
9. 4
10. 7
11. 7
12. 5
13. 8
13. 6
15. 1
15. 4 | **C42.0 -46.0 -51.4 -57.6 -62.0 -63.0 -62.0 -58.5 -63.0 -62.0 -58.5 -57.8 | ## RIVERS AND FLOODS [River and Flood Division, MERRILL BERNARD in charge] By Bennett Swenson Drought conditions continued during November 1939, over most of the country and record low stages for the month were established at a number of stations. No floods were reported. # WEATHER ON THE ATLANTIC AND PACIFIC OCEANS [The Marine Division, I. R. TANNEHILL in charge] #### NORTH ATLANTIC OCEAN, NOVEMBER 1939 By H. C. HUNTER Atmospheric pressure.—Pressure averaged higher than normal over the west-central, south-central, and south-eastern portions, particularly the southeastern. It was lower than normal over the extreme northwestern area. From the parallel of 40°, north latitude, southward the pressure almost everywhere averaged higher during the second half of the month than it had during the first half. The extremes of pressure noted in available vessel reports are 1,035.6 and 965.1 millibars (30.58 and 28.50 inches). The high mark was noted on the American steamship Narbo, during the forenoon of the 23d, near 46° N., 32½° W. Table 1 indicates a slightly higher reading on shore at Horta, occurring on the 24th. The low mark was noted on the American steamship Lafayette, at 6 p. m. of the 5th, near 55° N., 10° W. Table 1.—Averages, departures, and extremes of atmospheric pressure (sea level) at selected stations for the North Atlantic Ocean and its shores, November 1939 | Station | Average
pressure | Depar-
ture | Highest | Date | Lowest | Date | |---|--|---|--|--|---|---| | Julianehaab, Greenland ¹ Lisbon, Portugal ² Horta, Azores Belle Isle, Newfoundland ¹ Hallfax, Nova Scotia Nantucket Hatteras Turks Island Key West New Orleans | Millibars
995.9
1, 023.8
1, 023.5
1, 007.5
1, 016.2
1, 019.3
1, 021.7
1, 013.6
1, 017.6
1, 022.7 | Millibars -5.1 +6.5 +3.26 +1.9 +1.7 +3.1 -2.0 +1.0 +3.4 | Millibars 1, 016 1, 034 1, 036 1, 033 1, 032 1, 034 1, 031 1, 031 1, 019 1, 024 1, 034 | 14
16, 17
24
22
4
4
10
16
27
27 | Millibars
967
1, 010
1, 010
983
999
996
1, 007
1, 006
1, 012
1, 012 | 4
4
6
7
1, 17
1
20
4
19
18 | For 26 days. For 25 days. Cyclones and gales.—The North Atlantic seems to have been about as stormy as in an average November, but the first half was stormier than the second half, and the final 5 days appear to have been nearly free from important storms. Two instances of winds of hurricane force were reported, the first by the Danish steamship Nevada, on the 12th, near 51° N., 36° W., and the second by the American steamship Latayette, on the 15th, approximately at 40° N., 38° W. Winds almost as intense, namely, of force 11, were noted by three vessels during the first week of the month, two of these being over the eastern part of the ocean, while the third was over waters to southward of Newfoundland, in connection with the disturbance of tropical origin which is mentioned elsewhere in this issue. A fourth instance of force 11 wind was noted, not quite a week before the month ended, in the vicinity of Sable Island. Tropical disturbance.—Elsewhere in this Review appears an account of the disturbance which started within the Tropics, late in October, and advanced slowly at first, crossing eastern Cuba on November 4, then moved swiftly northeastward till at last the morning of November 8, when it was central to the eastward of Labrador. Fog.—Remarkably few reports of fog have been received. No portion of the North Atlantic is indicated to have had fog on 4 or more days, but two 5° squares are known to have had some on 3 days each. The occurrences for one of these, at the southern tip of the Grand Banks, were on widely scattered dates, but all the dates were within the period 11th to 16th in the case of the other square, which was in the northwestern Gulf of Mexico, 25° to 30° N., 90° to 95° W. No fog whatever was reported near the coast of North America between Nova Scotia and Cape Hatteras, where there usually is a little fog during November. The region of the Grand Banks seems to have had less than half the normal amount of November fog. Note.—All data based on a. m. observations only, with departures compiled from best available normals related to time of observation, except Hatteras, Key West, Nantucket, and New Orleans, which are 24-hour corrected means.